Door Michiel van Diesen, Eric van Amerongen en Jelke Bethlehem,
Inleiding
In Nederland zijn er meer dan 300 publieke lokale omroepen. Een lokale omroep is, zoals de naam al zegt, een omroep die zich richt op een bepaalde gemeente of op bepaalde groep gemeenten. Meestal worden deze omroepen gerund door vrijwilligers en werken ze met een krap budget.
Deze lokale omroepen zijn publiek, dat wil zeggen dat ze gratis de beschikking krijgen over een kabel en een etherfrequentie (net zoals radio 1 tot en met 5 en de 13 regionale omroepen in Nederland). Dit in tegenstelling tot de commerciële omroepen: die moeten (fors) voor de frequenties betalen.
Maar de publieke lokale omroepen moeten zich wel aan de mediawet houden, en een onderdeel daarvan is het Programmavoorschrift. Dit houdt in dat lokale omroepen minimaal 50 procent van hun zendtijd moeten besteden aan ICE-programma’s, dat wil zeggen Informatie, Cultuur en Educatie. Dus lokaal nieuws, de verrichtingen van de lokale voetbalclub(s), speciale muziekprogramma’s, informatie over het programma van het lokale theater enzovoorts. Als een programma voor meer dan 50 procent is gevuld met ICE-onderdelen, dan wordt het hele programma meegeteld bij het bepalen van het ICE-percentage.
Al die ICE-programma’s bij elkaar opgeteld, gedeeld door het totale aantal uitzenduren, levert dus een ICE-percentage op. Als dit meer dan 50 bedraagt, dan voldoet de omroep aan de ICE-norm.
Dit geheel wordt gecontroleerd door het Commissariaat voor de Media (CvdM).
Probleem is alleen dat er nogal wat omroepen zijn die de regels niet helemaal opvolgen. Er zijn zelfs omroepen die de regels aan hun laars lappen en een extreem laag percentage hebben. Wij vroegen ons dan ook af of de gemiddelde omroep aan de wet voldoet, dus of ze de ICE-norm halen. Daarnaast vroegen wij ons af of bijvoorbeeld het bereik van een omroep invloed heeft op het ICE-percentage.
Voordat we verder gaan eerst nog even een opmerking: laat u niet afschrikken door het gebruik van statistische vaktermen. Ze worden meestal wel uitgelegd, en ze worden alleen gebruikt om uit te leggen hoe we aan de uitkomsten zijn gekomen. Het gaat uiteraard om de uitkomsten.
Het Onderzoek
Tijd voor een onderzoek dus. Het is uiteraard onmogelijk om alle meer dan 300 lokale omroepen te controleren; dat kost simpelweg te veel tijd. Daarom hebben we een aselecte (=willekeurige) steekproef genomen onder een aantal omroepen, en daarvan hebben we de website bezocht. Direct doorklikken naar de programmering levert vervolgens een overzicht op van wat de omroep nu precies uitzend.
Het is niet makkelijk om per omroep het exacte ICE-percentage vast te stellen. Ten eerste kun je natuurlijk niet gaan luisteren (zoals het CvdM doet), de meeste omroepen hebben een bereik van een kilometer of tien. Daarom hebben we de websites ook bezocht. De ervaring leerde echter dat de sommige omroepen de zaken nog wel een rooskleuriger willen voorspiegelen dan ze zijn.
Toch zijn we zeer soepel geweest. Van iedere omroep hebben we de programmering onder de loep genomen en vervolgens gekeken. Was het duidelijk een ICE-programma, dan werd het meegetelt. Was het duidelijk geen ICE-programma, dan werd het niet meegeteld. Bij twijfel hebben we de omroepen het voordeel van de twijfel gegeven, en het programma als ICE meegetelt. Dit kan een vertekend beeld opleveren (in het voordeel van de omroepen), maar eventuele losstaande ICE-minuten (bijvoorbeeld lokaal nieuws tijdens non-stop muziek) hebben we niet meegetelt. Het Commissariaat voor de Media doet dit wel. We gaan er van uit dat dit elkaar min of meer opheft, zodat we een redelijke schatting hebben kunnen maken.
Daarnaast hebben we onderzocht of er verschil is tussen de omroepen die al eens een boete hebben gehad van het CvdM en diegenen die het nog nooit met het commissariaat aan de stok hebben gehad. Om dit te kunnen bepalen hebben we dus twee steekproeven getrokken: 41 omroepen die nog geen boete hebben gehad en 13 omroepen met boete.
De Gegevens
Voor alle 54 (41 + 13) geselecteerde lokale omroepen is het ICE-percentage berekend. Alleen uren tussen 7 en 23 uur tellen mee voor de ICE-norm. Dat is 16 uur per dag, dus 16 x 7 = 112 uur per week, en dus 52 x 112 = 5824 uur per jaar.
Stel: een omroep zend 24 uur per dag uit. En die omroep heeft elke dag twee ICE-programma’s van twee uur. Dit is dan dus 4 x 7 x 52 = 1456 uur ICE per jaar. De desbetreffende omroep zou dan dus een ICE-percentage hebben van 25 % (er vanuit gaande dat er geen andere ICE-programma’s zijn).
Voor elk omroep is eerst het totaal aantal uitzenduren per jaar bepaald (voor zover die uren liggen tussen de 7 en 23 uur). Vervolgens is bepaald hoeveel uur eigen ICE-programma’s de omroep uitzend, en verder hoeveel uur ICE-programmering afkomstig is uit raamprogrammering (regionale omroep). Beide aantallen opgeteld levert het totaal aantal uur ICE-programma’s. Tenslotte is op basis van dit totaal het percentage ICE-uren bepaald.
Laten we de gegevens nu eens gaan bekijken.
Jelke Bethlehem is werkzaam bij het CBS en tevens part-time hoogleraar statistiek aan de Universiteit van Amsterdam. Daarnaast is hij actief als voorzitter van de lokale omroep Radio Rijnwoude
Voor meer informatie over de statistische achtergronden van dit onderzoek kun je je wenden tot de literatuur over statistiek. Een boek waarin de zaken helder worden uitgelegd is: Statistics for Business and Economics, van McClave, Benson en Sincich (7th Edition, Prentice Hall). Dit boek is Engelstalig.
De gehele dataset is op te vragen bij Michiel van Diesen (column @ radiowereld.net). Let er wel op dat alle namen en inwoneraantallen uit deze dataset zijn verwijderd, om geen omroepen in de problemen te brengen (mocht het CvdM meelezen).
Helaas was het Commissariaat voor de Media niet bereid om mee te werken aan ons onderzoek. Daarom hebben we via de programmeringen op de websites moeten werken.
Opmerkingen achteraf:
Lokale omroepen, vertel ons wat voor problemen jullie wel of niet ondervinden met het halen van de ICE-norm! Dit kan via de mail (column @ radiowereld.net) of –geheel anoniem- via het reactieformulier op deze site!
Alle antwoorden zullen (uiteraard) vertrouwelijk worden behandeld, en bij plaatsing zullen – op verzoek – alle verwijzingen naar omroepnamen en plaatsen worden verwijderd.
Bij deze nodigen wij alle lokale omroepen uit om hun visie te geven op deze zaken. Dit kan eventueel anoniem, en wij willen de reacties gebruiken voor een tweede artikel, waarin lokale omroepen vertellen waarom zij de ICE-norm wel of juist niet weten te halen.
Reageer!
Natuurlijk zijn er meer factoren die het ICE percentage bepalen: dit blijkt ook uit de analyse.
Natuurlijk moeten we wel vermelden dat dit slechts een steekproef is, en dat de uitkomsten daardoor kunnen verschillen van de werkelijkheid. Dit zal echter (naar verwachting) eerder lager dan hoger uitvallen, omdat wij, zoals al eerder gezegd, zeer soepel zijn geweest.
Een verband tussen bereik en ICE-percentage valt niet aan te tonen.
Er blijkt wel een verband te zijn tussen het aantal uitzenduren (per jaar) en het ICE-percentage: hoe meer een omroep uitzend hoe lager het percentage. Dit verband is heel sterk.
De gemiddelde lokale omroep haalt de ICE-norm niet. Er zijn er een aantal die de norm wel halen, en er zijn er een aantal die de norm niet halen, maar het gemiddelde en het betrouwbaarheidsinterval spreken voor zich. We kunnen geen conclusies trekken over een eventueel verschil tussen de beboette en de niet-beboette omroepen.
Conclusie
Zoals te zien valt is de lijn erg vlak. Nadere bestudering van de resultaten leert dan ook dat de lijn zeer onbetrouwbaar is: slechts 1,4 procent van de variantie wordt bepaald door de regressie. Daarnaast is de software absoluut niet zeker over de betrouwbaarheid van de resultaten. We kunnen dan ook stellen dat de uitkomsten niet significant zijn.
We hebben ook een analyse gedaan om de relatie tussen het ICE percentage en het inwoneraantal te achterhalen. In eerste instantie leek er een negatief verband te bestaan, echter we hadden een uitschieter: een omroep in een grote stad met een percentage van nul. Dat kan de resultaten vertekenen, dus hebben we gekeken wat er gebeurde als we deze omroep uit de dataset zouden verwijderen (alleen voor deze analyse dan). De grafiek hier onder ziet er dan als volgt uit:
De computer weet een verband te vinden, en is daar aardig zeker van. Ook kunnen we stellen dat 41% van de variantie wordt verklaard door de getrokken lijn. Voor de beboette omroepen hebben we dit niet kunnen doen; die zenden nl allemaal 24 uur per dag uit.
We hebben getest voor de beboette en de niet-beboette omroepen apart. Dit is met het statistische programma SPSS gedaan. SPSS toont duidelijk een verband aan tussen het aantal uitzenduren van de niet-beboette omroepen en het ICE-percentage. Dit valt te zien in de volgende grafiek:
De uitkomsten zijn best opvallend. Want wat blijkt?
We hebben dit gedaan, maar we hebben niet alleen onderzocht of het bevolkingsaantal (de gegevens zijn afkomstig van het CBS) het ICE-percentage beïnvloedt, maar ook hebben we naar het aantal uitzenduren per jaar gekeken.
Stel dat we de ICE-percentages pakken, en we daarnaast een lijst met bevolkingsaantallen neerzetten. Vervolgens laten we de computer al deze punten (dus een combinatie van 1 percentage en het bijbehorende bevolkingsaantal) in een grafiek zetten en hem vervolgens een rechte lijn daar doorheen laten tekenen die het dichtste tegen de punten aanligt. Hiermee valt te bepalen of, en zo ja hoe, het bevolkingsaantal het ICE-percentage beïnvloed.
Om dit te kunnen bepalen hebben we een zogenaamde regressie-analyse uitgevoerd. Even een korte uitleg wat dat is.
Na deze vergelijking komen we bij het volgende onderdeel van ons onderzoek. Wij vroegen ons af of er een verband bestaat tussen het aantal uitzenduren, het bereik van een zender en het ICE-percentage.
Regressie
(Mede) door de kleine steekproef bij de beboette omroepen kunnen we de conclusie dat er een verschil zit tussen de niet en de wel beboette omroepen niet trekken, ondanks dat de gemiddelden verschillen (43,69 en 46,65 procent).
Toch kunnen we de conclusie trekken dat de gemiddelde omroep de 50% gewoon niet haalt: dit valt te berekenen door de twee steekproeven op één hoop te gooien.
Voor de beboete omroepen loopt het 95%-betrouwbaarheidsinterval van 33,6% tot 59,9%. Dit is een veel breder interval. Dat heeft te maken met het feit dat de steekproef erg klein was. Daarom kunnen we minder nauwkeurige uitspraken doen. Het gemiddelde ICE-percentage van de beboete omroepen ligt dus met 95% zekerheid ergens tussen de 33,6 en 59,9%. We kunnen geen uitspraak doen of het echte percentage onder of boven de 50% ligt. Daarvoor is er teveel onzekerheid.
Voor de niet-beboete omroepen loopt dit betrouwbaarheidsinterval van 37,8% naar 49,6%. Dit betekent dat we met 95% zekerheid de uitspraak kunnen doen dat het gemiddelde ICE-percentage van alle niet beboete omroepen zal liggen tussen de 37,8 en 49,6%. Dat betekent dus ook dat deze omroepen gemiddeld de norm van 50% niet halen.
Een eerste stap is het maken van een schatting van het gemiddelde ICE-percentage voor alle omroepen in beide groepen (dus inclusief de niet-geselecteerde omroepen). De techniek daarvoor is het 95%-betrouwbaarheidsinterval (ook een term om direct weer te vergeten). De berekeningen zijn uitgevoerd met het statistische computerprogramma SPSS.
Voordat we een statistische toets kunnen uitvoeren, moeten we eerst kijken of de verdeling normaal is (dus dat er geen afwijkingen zijn). Nadat we de uitkomsten op normaal waarschijnlijkheidspapier (vergeet die term maar direct) hebben uitgezet, kwamen we tot de conclusie dat de verdeling bij benadering normaal is. We kunnen de computer dus aan het rekenen zetten om een analyse uit te voeren.
De Statistische Toets
Bij de beboete omroepen variëren de percentages wat minder. Ze lopen uiteen tussen de 20% en 60%. Het midden van de verdeling (de mediaan) lijkt een fractie hoger te liggen, en dus iets dichter bij de 50%. Er zijn drie uitschieters. We kunnen vaststellen dat de beboete omroepen niet duidelijk hogere ICE-percentages hebben dan de niet-beboete omroepen. We moeten echter voorzichtig zijn met onze conclusies omdat we met steekproeven werken. Om meer duidelijk te krijgen moeten we een statistische toets uitvoeren.
In de linker box-plot kunnen we zien dat de ICE-percentages van de omroepen zonder boete varieren tussen minder dan 15% en bijna 80%. Het midden van de verdeling ligt tussen de 40% en 50%. Er is een omroep met een percentage van 0 (nul), deze scoort daarmee extreem laag. Er is ook een omroep die hoog scoort met 80%.
Hiernaast ziet u een zogenaamde box-plot. Een box-plot beschrijft op schematische wijze de verdeling van de waarden. De grijze doos geeft de middelste helft van de waarden aan. De horizontale lijn in de grijze doos duidt de mediaan aan. Dat is precies de middelste waarde van de verdeling. De onderste verticale lijn geeft het gebied aan waarbinnen het kleinste kwart van de waarden ligt. De bovenste verticale lijn geeft het grootste kwart van de waarden aan. Waarden die ernstig afwijken van het algemene patroon worden apart weergegeven